Venkatasubramaniam, A. ., Mateen, B. A., Shields, B. M., Hattersley, A. T., Jones, A. G., Vollmer, S. J., & Dennis, J. M. (2023). Comparison of causal forest and regression-based approaches to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision medicine. BMC Med Inform Decis Mak, 23, 110. http://doi.org/10.1186/s12911-023-02207-2
machine learning
Banerjee, A. ., Dashtban, A. ., Chen, S. ., Pasea, L. ., Thygesen, J. H., Fatemifar, G. ., … Hemingway, H. . (2023). Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic validation study. Lancet Digit Health, 5, e370-e379. http://doi.org/10.1016/s2589-7500(23)00065-1
Yang, F. ., Meng, T. ., Torben-Nielsen, B. ., Magnus, C. ., Liu, C. ., & Dejean, E. . (2023). A machine learning approach to support triaging of primary versus secondary headache patients using complete blood count. PLoS One, 18, e0282237. http://doi.org/10.1371/journal.pone.0282237
Dashtban, A. ., Mizani, M. A., Pasea, L. ., Denaxas, S. ., Corbett, R. ., Mamza, J. B., … Banerjee, A. . (2023). Identifying subtypes of chronic kidney disease with machine learning: development, internal validation and prognostic validation using linked electronic health records in 350,067 individuals. EBioMedicine, 89, 104489. http://doi.org/10.1016/j.ebiom.2023.104489
Briggs, E. ., de Kamps, M. ., Hamilton, W. ., Johnson, O. ., McInerney, C. D., & Neal, R. D. (2022). Machine Learning for Risk Prediction of Oesophago-Gastric Cancer in Primary Care: Comparison with Existing Risk-Assessment Tools. Cancers (Basel), 14. http://doi.org/10.3390/cancers14205023