Dashtban, A. ., Mizani, M. A., Pasea, L. ., Denaxas, S. ., Corbett, R. ., Mamza, J. B., … Banerjee, A. . (2023). Identifying subtypes of chronic kidney disease with machine learning: development, internal validation and prognostic validation using linked electronic health records in 350,067 individuals. EBioMedicine, 89, 104489. http://doi.org/10.1016/j.ebiom.2023.104489
Prognosis
Wambua, S. ., Crowe, F. ., Thangaratinam, S. ., O’Reilly, D. ., McCowan, C. ., Brophy, S. ., … Riley, R. . (2022). Protocol for development and validation of postpartum cardiovascular disease (CVD) risk prediction model incorporating reproductive and pregnancy-related candidate predictors. Diagn Progn Res, 6, 23. http://doi.org/10.1186/s41512-022-00137-7
Archer, L. ., Koshiaris, C. ., Lay-Flurrie, S. ., Snell, K. I. E., Riley, R. D., Stevens, R. ., … Sheppard, J. P. (2022). Development and external validation of a risk prediction model for falls in patients with an indication for antihypertensive treatment: retrospective cohort study. Bmj, 379, e070918. http://doi.org/10.1136/bmj-2022-070918
Rapsomaniki, E. ., Shah, A. ., Perel, P. ., Denaxas, S. ., George, J. ., Nicholas, O. ., … Hemingway, H. . (2014). Prognostic models for stable coronary artery disease based on electronic health record cohort of 102 023 patients. Eur Heart J, 35, 844–52. http://doi.org/10.1093/eurheartj/eht533